XIAP Protection of Photoreceptors in Animal Models of Retinitis Pigmentosa

نویسندگان

  • Kevin C. Leonard
  • Dino Petrin
  • Stuart G. Coupland
  • Adam N. Baker
  • Brian C. Leonard
  • Eric C. LaCasse
  • William W. Hauswirth
  • Robert G. Korneluk
  • Catherine Tsilfidis
چکیده

BACKGROUND Retinitis pigmentosa (RP) is a blinding genetic disorder that is caused by the death of photoreceptors in the outer nuclear layer of the retina. To date, 39 different genetic loci have been associated with the disease, and 28 mutated genes have been identified. Despite the complexity of the underlying genetic basis for RP, the final common pathway is photoreceptor cell death via apoptosis. METHODOLOGY/PRINCIPAL FINDINGS In this study, P23H and S334ter rhodopsin transgenic rat models of RP were used to test the neuroprotective effects of anti-apoptotic gene therapy. Adeno-associated viruses (AAV) carrying the X-linked inhibitor of apoptosis (XIAP) or green fluorescent protein (GFP) were delivered subretinally into the eye of transgenic rat pups. Histological and functional measures were used to assess neuroprotection. XIAP is known to block apoptosis by inhibiting the action of caspases-3, -7 and -9. The results show that XIAP gene therapy provides long-term neuroprotection of photoreceptors at both structural and functional levels. CONCLUSIONS/SIGNIFICANCE Our gene therapy strategy targets the apoptotic cascade, which is the final common pathway in all forms of retinitis pigmentosa. This strategy holds great promise for the treatment of RP, as it allows for the broad protection of photoreceptors, regardless of the initial disease causing mutation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Patterns of Inheritance in Affected Patients with Retinitis Pigmentosa in Iranian Populations

Background and Aims: Retinitis pigmentosa (RP) is the most common form of inherited retinal degeneration, photoreceptors loss of which in the retina causes visual loss. The purpose of the present study was to determine patterns of inheritance in RP patients in Yazd to help the health professional for designing suitable laboratory testing for the high risk families. Materials and Methods: Thirt...

متن کامل

Structural and functional protection of photoreceptors from MNU-induced retinal degeneration by the X-linked inhibitor of apoptosis.

PURPOSE To evaluate the neuroprotective effects of adenoassociated virus delivery of XIAP in N-methyl-N-nitrosourea (MNU)-induced retinal degeneration in Sprague-Dawley rats. METHODS Sprague-Dawley rats were injected subretinally with recombinant adenoassociated virus (rAAV) encoding either XIAP or green fluorescent protein (GFP; injection control). Six weeks after injection, the animals rece...

متن کامل

A Short N-terminal Domain of HDAC4 Preserves Photoreceptors and Restores Visual Function in Retinitis Pigmentosa

Retinitis pigmentosa is a leading cause of inherited blindness, with no effective treatment currently available. Mutations primarily in genes expressed in rod photoreceptors lead to early rod death, followed by a slower phase of cone photoreceptor death. Rd1 mice provide an invaluable animal model to evaluate therapies for the disease. We previously reported that overexpression of histone deace...

متن کامل

Environmental Enrichment Extends Photoreceptor Survival and Visual Function in a Mouse Model of Retinitis Pigmentosa

Slow, progressive rod degeneration followed by cone death leading to blindness is the pathological signature of all forms of human retinitis pigmentosa (RP). Therapeutic schemes based on intraocular delivery of neuroprotective agents prolong the lifetime of photoreceptors and have reached the stage of clinical trial. The success of these approaches depends upon optimization of chronic supply an...

متن کامل

Insights into X-linked retinitis pigmentosa type 3, allied diseases and underlying pathomechanisms.

In the past decade, we have witnessed great advances in the identification of genes underlying numerous neurodegenerative diseases and the stark complexity determining genotype-phenotype relationships that lead to the impairment, and ultimately, premature death of neurons. However, significant challenges lie ahead in understanding the pathobiological and spatiotemporal processes triggered by ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007